UVLED發(fā)光機(jī)理:PN結(jié)的端電壓構(gòu)成一定勢(shì)壘,當(dāng)加正向偏置電壓時(shí)勢(shì)壘下降,P區(qū)和N區(qū)的多數(shù)載流子向?qū)Ψ綌U(kuò)散。由于電子遷移率比空穴遷移率大得多,所以會(huì)出現(xiàn)大量電子向P區(qū)擴(kuò)散,構(gòu)成對(duì)P區(qū)少數(shù)載流子的注入。這些電子與價(jià)帶上的空穴復(fù)合,復(fù)合時(shí)得到的能量以光能的形式釋放出去。這就是PN結(jié)發(fā)光的原理。
UVLED固化機(jī)原理發(fā)光效率:一般稱為組件的外部量子效率,其為組件的內(nèi)部量子效率與組件的取出效率的乘積。所謂組件的內(nèi)部量子效率,其實(shí)就是組件本身的電光轉(zhuǎn)換效率,主要與組件本身的特性(如組件材料的能帶、缺陷、雜質(zhì))、組件的壘晶組成及結(jié)構(gòu)等相關(guān)。而組件的取出效率則指的是組件內(nèi)部產(chǎn)生的光子,在經(jīng)過組件本身的吸收、折射、反射后,實(shí)際在組件外部可測(cè)量到的光子數(shù)目。因此,關(guān)于取出效率的因素包括了組件材料本身的吸收、組件的幾何結(jié)構(gòu)、組件及封裝材料的折射率差及組件結(jié)構(gòu)的散射特性等。而組件的內(nèi)部量子效率與組件的取出效率的乘積,就是整個(gè)組件的發(fā)光效果,也就是組件的外部量子效率。早期組件發(fā)展集中在提高其內(nèi)部量子效率,主要方法是通過提高壘晶的質(zhì)量及改變壘晶的結(jié)構(gòu),使電能不易轉(zhuǎn)換成熱能,進(jìn)而間接提高UVLED固化機(jī)原理的發(fā)光效率,從而可獲得70%左右的理論內(nèi)部量子效率,但是這樣的內(nèi)部量子效率幾乎已經(jīng)接近理論上的極限。在這樣的狀況下,光靠提高組件的內(nèi)部量子效率是不可能提高組件的總光量的,因此提高組件的取出效率便成為重要的研究課題。現(xiàn)在的方法主要是:晶粒外型的改變——TIP結(jié)構(gòu),表面粗化技術(shù)。
UVLED固化機(jī)原理電氣特性:電流控制型器件,負(fù)載特性類似PN結(jié)的UI曲線,正向?qū)妷旱臉O小變化會(huì)引起正向電流的很大變化(指數(shù)級(jí)別),反向漏電流很小,有反向擊穿電壓。在實(shí)際使用中,應(yīng)選擇 。UVLED正向電壓隨溫度升高而變小,具有負(fù)溫度系數(shù)。UVLED消耗功率 ,一部分轉(zhuǎn)化為光能,這是我們需要的。剩下的就轉(zhuǎn)化為熱能,使結(jié)溫升高。散發(fā)的熱量(功率)可表示為 。
UVLED光學(xué)特性:UVLED提供的是半寬度很大的單色光,由于半導(dǎo)體的能隙隨溫度的上升而減小,因此它所發(fā)射的峰值波長(zhǎng)隨溫度的上升而增長(zhǎng),即光譜紅移,溫度系數(shù)為+2~3A/。UVLED發(fā)光亮度L與正向電流。電流增大,發(fā)光亮度也近似增大。另外發(fā)光亮度也與環(huán)境溫度有關(guān),環(huán)境溫度高時(shí),復(fù)合效率下降,發(fā)光強(qiáng)度減小。
UVLED熱學(xué)特性:小電流下,LED溫升不明顯。若環(huán)境溫度較高,UVLED的主波長(zhǎng)就會(huì)紅移,亮度會(huì)下降,發(fā)光均勻性、一致性變差。尤其點(diǎn)陣、大顯示屏的溫升對(duì)LED的可靠性、穩(wěn)定性影響更為顯著。所以散熱設(shè)計(jì)很關(guān)鍵。
UVLED壽命:UVLED的長(zhǎng)時(shí)間工作會(huì)光衰引起老化,尤其對(duì)大功率UVLED來說,光衰問題更加嚴(yán)重。在衡量UVLED的壽命時(shí),僅僅以燈的損壞來作為UVLED壽命的終點(diǎn)是遠(yuǎn)遠(yuǎn)不夠的,應(yīng)該以UVLED的光衰減百分比來規(guī)定LED的壽命,比如35%,這樣更有意義。
大功率UVLED封裝:主要考慮散熱和出光。散熱方面,用銅基熱襯,再連接到鋁基散熱器上,晶粒與熱襯之間以錫片焊作為連接,這種散熱方式效果較好,性價(jià)比較高。出光方面,采用芯片倒裝技術(shù),并在底面和側(cè)面增加反射面反射出浪費(fèi)的光能,這樣可以獲得更多的有消出光。